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Abstract— We perform a sensitivity analysis of the eigenmodes  The state variables of FIT are integral quantities which are
in dielectric waveguides with respect to design parameters. Based defined on edges and facets of the primary gtidnd the dual
on a discretization using the Finite Integration Technique the grid a respectively. Collected in algebraic vectors, these are
eigenvalue problem for the wave number is shown to be non- N P . = = § o
Hermitian with possibly complex solutions even in the lossless € drid voltagese, h and the grid fluxesd, b. Neglecting
case. Nevertheless, the sensitivity can be obtained with negligiblecharges and currents, we obtain #exwell’s Grid Equations

numerical effort. The first numerical example, the sensitivity of _ = .
the effective index of a graded index fiber with respect to the ca Ce =—jwb, Ch = jwd, (1)
size, demonstrates the validity of the method. For the frequency Sb =0 Sd=o0 )
itself as parameter, a 2nd order sensitivity analysis yields a fast ’ '

approximation of the dispersion relation of the fiber. The matricesC and C = CT are the discrete curl-operators,

matricesS and S the discrete div-operators of the primary
I. INTRODUCTION and dual grid, respectively. In Cartesian grids they caradis

Numerical simulations of waveguide structures by finittubmatricesP,, P,, P. which can be identified as partial
methods have been used for many years, and a numbeidiferentiation operators [5]. From grid topology we findeth
eigenvalue formulations are available. For optical applicexact relationsSC =0 andSC = 0.
tions such as fibers or integrated waveguides the numberdhe formulation is completed by thenaterial relations
of unknowns can become quite large although only twdfor linear media)d = M. e, h = M ' b. Both material
dimensional discrete models are considered. If additipnamatricesM. andM,! are diagonal for Cartesian meshes and
the dependencies of the modes w.r.t. design parameters stigy be complex to account for dielectric or magnetic losses.
as geometric dimensions or material parameters are searchd=or the discretization of waveguide cross sections we use
for, it is desirable to have sophisticated approaches fer f& 2D Cartesian grid system witVp primary nodes. If we
parameter sweeps at hand. assume a wave propagatiéh H ~ e~/ #:% in z-direction with

Several such approaches have been reported in the conte®twave numbef:, the longitudinal differentiation operator
of Model Order Reduction (MOR) techniques. In most casé$ given byP. =—jk.I, wherel denotes the identity matrix.
they are based on projections of the system matrices by low{n order to derive an eigenvalue formulation for the modes
dimensional subspaces, and recently some effort has b#eguch waveguide cross sections, we start with the 3D curl-
taken to extend them to the multi-variate case [1], [2]. curl eigenproblemC"M'Ce = w?’M.e and use the

A different approach, the so-called sensitivity analysis alivergence-free condition of the fieldS,d = 0, to eliminate
electromagnetic systems using adjoint techniques [3], hidee longitudinale .-components. This leads to2&Vp x 2Np-
recently gained large interest. Starting with analyticdffled eigenvalue problem for the transversal electric field:
entiations of the algebraic matrix equations, compact tdas ~
can be derived for the sensitivities of output quantitiestw. (Acc —W’B + K T) x =0, X = <EI> . ©))
an arbitrary number of design parameters. Adjoint techesqu €y
have been applied to various formulations in electromagneFor a fixed frequencyw this is a simple, non-symmetric
modeling, but to our knowledge not yet to eigenvalue prollereigenproblem(A — A\I) x = 0 with the eigenvalue\ = —k2.
of dielectric waveguides. In this paper we apply a classieat
sitivity analysis to the eigenvalue problem arising from@ 2 I1l. SENSITIVITY ANALYSIS

FIT-discretization of inhomogeneous dielectric wavegsid . . e . -
9 g We are interested in the sensitivity of the eigensolutioitk w

Il. WAVEGUIDE EIGENVALUE PROBLEM USINGEIT respect to a number of design parameters such as geometric
dimensions or permittivity values. For simplicity of ndtat

We consider a cross section of a dielectric waveguide aﬂgrestrict here to one single parameteand calculate the
use the Finite Integration Technique, FIT, [4], [5] for thederivativesX = d\/dp andx’ = dx/dp

discretization of Maxwell's Equations in frequency domain The derivation makes use of the left-eigenvectpref the

For sake of simplicity, a standard Cartesian mesh with PES(;’/stem (the eigenvector of the Hermitian mati¥!, hence:
boundary conditions is used. The derivation of the resyltirbdjoint technique) with ’

eigenvalue problem has been described in detail in [4], f6] a
is only briefly revisited here. yA(A - XI)=0 (4)



and the orthonormality condition of right- and left- 16 é
eigenvectors (of two modes ) ’g 12 £
y(j)HX(i) =6 (5) i a %
Following the standard perturbation theory for eigenpeots 4 s E
H ; vad _ . 0
[7] we build the derivativeg; {(A — AI)x = 0}: 0 4 a 12 16
= (A'=NDx+(A-XD)x =0. (6) X (um) Radiusp (um)

Multiplying from the left byyH yields, together with (4) and Fig. 1. Geometrical data of the graded index waveguide profil.

(5), the desired eigenvalue sensitivity:
N =y7Ax. 7

< 1.523 + — o4
Once X' has been calculated, eq. (6) defines a linear systeng P e G o
for the eigenvector derivative’, cf. [7]. In a similar manner, o 1.522 s o .
we can also find formulas for higher order derivatives. Ang ~°
example which will be used below is the expression ‘*§ 1.521 I o ?:rell$clt§rosr\g(c:fp 1
N = yHA//X + 2yH(A/ . )\/I) <. (8) % A o Y
4 6 8 10 12 14
Unfortunately, in a non-Hermitian system as given here, the Core radius @ (um)

left- and right eigenvectors are not identical. Howeveg th

orthogonality property (5) between the left eigenvectod an _ T
the original right eigenvector (the transversal electraldii (= — Taylor 1" order
suggests thay may be related to the magnetic field in the 7 & Taylor 2™ order
guide and the? x H cross product. It has already been shown = s |
previously [6] that this type of orthogonality can be reproed 'z
within the discrete setting by = )
. 2 Poooo o Sre cwm S oo oo oaf
S - it = v-(5) o N

. . . . . Fig. 2. Sensitivity analysis of. and .
To confirm this assumption we can derive the elgenmodeq y analy e(a) andne(f)

formulation for the magnetic field components in a similar
way than above for the electric field. After some calculatien V.. CONCLUSIONS
indeed find thay solves the adjoint eigenvalue problem to (3).
As a consequence, although the matrix is non-symmetric,
left-eigenvector can be easily calculated without any il
solver step, simply by applying the discrete Faraday’s law.
Finally we need an implementation for the matrix derivativ
A= B%A, more details will be given in the final paper.

Since the required left-eigenvectors in the sensitivitglan
%s are available without an additional solving step, tigt fi
and second order derivatives w.r.t. various parametersean
calculated at low computational cost. The results may b&ilise
fh optimization approaches, but also as a fast alternative t
parameter sweeps. Applied to the frequency as parameiter, th
IV. NUMERICAL EXAMPLE approach clearly has close relations to MOR techniqueshwhic

We test our algorithm on a graded index waveguide witffill be further discussed in the final paper.

parabolic index profile. Fig. 1 shows the 2D computational

grid and the profile of the refractive index = /e, as a _ _ o o
function of the radius. Due to the twofold symmetry only [H] ©: Farle, V. Hill, P. Nickel, and R. Dyczij-Ediinger, "Mtvariate finite el-
. . . ement model order reduction for permittivity or permeabilityiraation,”
a quarter of the waveguide has to be discretized. The goal |ggg Transactions on Magnetics, vol. 42, no. 4, pp. 623-626, 2006.
quantity is the effective refractive indexer = k. /ko, and [2] K. Stavrakakis, T. Wittig, W. Ackermann, and T. Weiland,iriearization

i i of parametric FIT-discretized systems for model order redu¢til EEE
parameter sweeps serve as a reference for the sensitivities Transactions on Magnetics, vol. 45, no. 3, pp. 13801383, 2009,

T_he first parameter_in th? sensitivity analysis is the cofg N. k. Nikolova, J. W. Bandler, and M. H. Bakr, “Adjoint taeiques for
radiusa of the waveguide. Fig. 2 shows the reference results sensitivity analysis in high-frequency structure CALEEE Transactions

together with a tangent which uses the first order derivatiYﬁ on w;qgﬁ’gve;hﬁz%:ﬁg;efﬂg'tﬁﬁ f‘g'tﬁg ggl-u%i'o f’]p-o;“ﬁ:‘l?' 2\5’34-

from the SenSitiVitY ana|y5i5- The results fit very ni'CGIY- ~ problem of longitudinally homogeneous waveguideBlectronics and
In a second validation we calculate the dispersion relation Communication, vol. 31, no. 7, pp. 308-314, 1977.

of the guide i.e. the dependency of the effective refractid®] T- Weiland, “Time domain electromagnetic field computatioithwinite
' difference methods/nternational Journal of Numerical Modelling: Elec-

index on the frequencyf. From (3) it is obvious that the  (ronic Networks, Devices and Fields, vol. 9, no. 4, pp. 295-319, 1996.
matrix derivative (w.r.t. tau,?) is simply A’ = —B in this case. [6] R. Schuhmann and T. Weiland, “Conservation of discretergy and
Compared again to a parameter sweep as reference, the 2ndelated laws in the finite integration technique,"Geometric Methods for
.p . 9 P . L P . Computational Electromagnetics (F. L. Teixeira, ed.), vol. 32 oPIER,
plot in Fig. 2 shows the relative deviation of a first and seton pp. 301-316, Cambridge, MA, USA: EMW Publishing, 2001.
order approximation, using the first and second derivativee a[7] R. Nelson, “Simplified calculation of eigenvector detivas,” AIAA

single expansion point, respectively. Journal, vol. 14, no. 9, pp. 1201-1205, 1976.
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